I believe the answer is C
Answer:
1. The graph where x axis and y axis are present is called coordinate.
4. 18
The average temperature of the ocean surface waters is about 17 degrees Celsius (62.6 degrees Fahrenheit).
Hoped that helped
Answer :
(A) The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
(B) The average rate of the reaction during this time interval is, 0.00176 M/s
(C) The amount of Br₂ (in moles) formed is, 0.0396 mol
Explanation :
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The given rate of reaction is,

The expression for rate of reaction :
![\text{Rate of disappearance of }HBr=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DHBr%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }H_2=+\frac{d[H_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DH_2%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }Br_2=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DBr_2%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part A:</u>
The rate expression will be:
![Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BH_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
<u>Part B:</u>
![\text{Average rate}=-\frac{1}{2}\frac{d[HBr]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20rate%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BHBr%5D%7D%7Bdt%7D)


The average rate of the reaction during this time interval is, 0.00176 M/s
<u>Part C:</u>
As we are given that the volume of the reaction vessel is 1.50 L.
![\frac{d[Br_2]}{dt}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D%3D0.00176M%2Fs)
![\frac{d[Br_2]}{15.0s}=0.00176M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BBr_2%5D%7D%7B15.0s%7D%3D0.00176M%2Fs)
![[Br_2]=0.00176M/s\times 15.0s](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.00176M%2Fs%5Ctimes%2015.0s)
![[Br_2]=0.0264M](https://tex.z-dn.net/?f=%5BBr_2%5D%3D0.0264M)
Now we have to determine the amount of Br₂ (in moles).



The amount of Br₂ (in moles) formed is, 0.0396 mol
Answer:
mass
Explanation:
It is the amount of matter .