Answer:
Increasing pressure is reducing the volume of the gas
Explanation:
trust me you will get it right if you don't you can delete my answer and I will loose the points
Answer:
1.5 moles of Ca²⁺ and 3 moles of NO₃⁻
Explanation:
This is the dissociation:
Ca(NO₃)₂ → Ca²⁺ + 2NO₃⁻
1.5 moles of salt will have the same moles of ion Ca²⁺ and the double of moles, of nitrate according to the equation.
Therefore will be 1.5 moles of Ca²⁺ and 3 moles of NO₃⁻
Answer:
[H+] = 1.66 x 
Explanation:
To find the [H+] concentration of a solution, we can use the formula:
![[H+] = 10^{-pH}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-pH%7D)
Let's plug in the pH.
![[H+] = 10^{-3.78}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-3.78%7D)
Evaluate the exponent.
[H+] = 1.66 x 
Hope this helps!
Answer:
490 J.
Explanation:
The following data were obtained from the question:
Mass (m) = 5 Kg
Height (h) = 10 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (P.E) =..?
Potential energy is the energy stored in a body by virtue of its location. Mathematically, it can be expressed as:
P.E = mgh
Where:
m is the mass of the object measured in kilograms (Kg).
g is the acceleration due to gravity and the value is 9.8 m/s².
h is the height to which the object is located measured in metre (m)
P.E is the potential energy measured in joule (J).
With the above formula, we can obtain the potential energy possed by the object as follow:
P.E = mgh
P.E = 5 x 9.8 x 10
P.E = 490 J
The,the potential energy possed by the object is 490 J
Explanation:
one thing to know is that higher surface area = higher boiling point.
NaCl has the smallest surface area, so it's the first one.
H2O has less surface area than methane, so it's second.
Methane has more surface area than H20, so it's third.
The big molecule has the most surface area, so it's last