The field strength needed to produce a 24.0 V peak emf is 0.73T.
To find the answer, we need to know about the expression of emf.
What's the expression of peak emf produced in a rotating rectangular loops?
- The peak emf produced in a rotating loops= N×B×A×w
- N= no. of turns of the loop, B= magnetic field, A= area of loop and w= angular frequency
- So, B = emf/(N×A×w)
<h3>What's the magnetic field applied to the loop, when rectangular coil with 300 turns of dimensions 5.00 cm by 5.22 cm rotates at 400 rpm produce a 24.0 V peak emf?</h3>
- N= 300, A= 5cm × 5.22cm = 0.05m × 0.0522m = 0.00261 m²
- Emf= 24V, w= 2π×400 rpm= 2π×(400rps/60) = 42 rad/s
- Now, B= 24/(300×0.00261×42)
B= 24/(300×0.00261×42) = 0.73T
Thus, we can conclude that the magnetic field is 0.73T.
Learn more about the electromagnetic force here:
brainly.com/question/13745767
#SPJ4
Answer:
y₀ = 10.625 m
Explanation:
For this exercise we will use the kinematic relations, where the upward direction is positive.
y = y₀ + v₀ t - ½ g t²
in the exercise they indicate the initial velocity v₀ = 8 m / s.
when the rock reaches the ground its height is zero
0 = y₀ + v₀ t - ½ g t²
y₀i = -v₀ t + ½ g t²
let's calculate
y₀ = - 8 2.5 + ½ 9.8 2.5²
y₀ = 10.625 m
Each hour 430 quintillion Joules of energy from the sun hits the Earth.
In a year it is very hard to determine because of the night and different light levels.
Answer:
f1= -350cm or -3.5m
f2= 22.1cm or 0.221m
Explanation:
A person is nearsighted when the person's far point is less than infinity. A diverging lens is normally used to correct this eye defect. A diverging lens has a negative focal length as seen in the solution attached.
Farsightedness is when a person's near point is farther than 25cm. This eye defect is corrected using a converging lens. The focal length of a converging lens is positive. This is evident in the solution attached. The near point is also referred to as the least distance of distinct vision.
Answer:
1497×10⁵ km
Explanation:
Speed of light in vacuum = 3×10⁵ km/s
Time taken by the light of the Sun to reach the Earth = 8 min and 19 s
Converting to seconds we get
8×60+19 = 499 seconds
Distance = Speed × Time
1 AU = 1497×10⁵ km
The Sun is 1497×10⁵ km from Earth