Answer:
ummm imma need the picture bud
Explanation:
Answer:
Work done = 35467.278 J
Explanation:
Given:
Height of the cone = 4m
radius (r) of the cone = 1.2m
Density of the cone = 600kg/m³
Acceleration due to gravity, g = 9.8 m/s²
Now,
The total mass of the cone (m) = Density of the cone × volume of the cone
Volume of the cone = 
thus,
volume of the cone =
= 6.03 m³
therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg
The center of mass for the cone lies at the
times the total height
thus,
center of mass lies at, h' = 
Now, the work gone (W) against gravity is given as:
W = mgh'
W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J
Answer:
2.5 s, 5 m
Explanation:
The equations for the horizontal and vertical position of Lukalu are:

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:
y(t) = 0
So we find:

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

Answer:
120 N
Explanation:
F=ma therefore 60kg times 2m/s^2 is 120 N