If the object's <em>velocity is constant</em> ... (it's speed isn't changing AND it's moving in a straight line) ... then the net force on the object is zero.<em> (D)</em>
Either there are no forces at all acting on the object, OR there are forces on it but they're 'balanced' ... when you add up all of their sizes and directions, they just exactly cancel each other out, and they have the SAME EFFECT on the object as if there were no forces at all.
 
        
             
        
        
        
According to another source this is what I got
<span>0.735 J ( Ep-potential energy, m-mass,g-gravitational acceleration = 9.81m/s², h-height; Ep = m * g * h; Ep = 0.0300 kg * 9.81 m/s² * 2.5 m ) 
</span>Hope it helps
        
                    
             
        
        
        
Answer:
B. less
Explanation:
acceleration due to gravity on Earth, g = 9.8 m/s²
acceleration due to gravity on Moon, g = 1.6 m/s²
Given mass of the object as, m = 5 kg
Weight of an object is given as, W = mg
                                                           
Weight of the object on Earth, W = 5 x 9.8 = 49 N
Weight of the object on Moon, W = 5 x 1.6 = 8 N
 
Therefore, the object weighs less on the moon compared to its weight on Earth.
The correct option is "B. less"