An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:

Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and

is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be
Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.
A dielectric, insulating material, or an extremely bad conductor of electrical current. Due to the absence of loosely bound, or free, electrons that could wander through the material, unlike metals, dielectrics practically do not conduct current when exposed to an electric field. Electric polarization takes place instead.
<h3>What is an Electric field?</h3>
- An electric field is an electrical property associated with every point in the space of any form of charge. An electric field is also described as the electric force per unit charge.
- Variable magnetic fields or electric charges are frequently the cause of electric fields. Volts per meter, a unit used in the SI, express electric field strength.
- The force acting on the positive charge is assumed to be exerted in the direction of the field. The electric field is directed radially inwards toward the negative point charge and radially outwards from the positive charge.
- Electric charge or magnetic fields with variable amplitudes can produce an electric field. The attraction forces that keep together atomic nuclei and electrons at the atomic scale are brought on by the electric field.
The phenomenon of polarization when a dielectric slab is subjected to an electric field:
A dielectric, insulating material, or an extremely bad conductor of electrical current. Due to the absence of loosely bound, or free, electrons that could wander through the material, unlike metals, dielectrics practically do not conduct current when exposed to an electric field. Electric polarization takes place instead.
To learn more about the electric field, refer to:
brainly.com/question/14372859
#SPJ9
The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.
Now from Newton`s first law, the net force on gymnast,

Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast (
acceleration due to gravity)
Therefore,
OR 
Given
and
Substituting these values in above formula and calculate the force exerted by the gymnast,

