1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BlackZzzverrR [31]
2 years ago
6

A convex mirror has a focal length of -13.0 cm. When you place a 6.00 cm tall pencil 60.0 cm in front of that mirror, what is th

e location of the pencil's image?
Physics
1 answer:
wlad13 [49]2 years ago
6 0

The location of the pencil's image is =16.6cm

<h3>Calculation of image location</h3>

The focal length of the convex mirror (f)= -13.0 cm

The object distance (u) = 60cm

The image distance (v) = xcm

Using the formula,1/f= 1/v + 1/u

Make 1/v the subject of formula,

1/v = 1/f -1/u

1/v = 1/13 - 1/60

1/v = 60-13/780

1/v = 47/780

V = 780/47

V = 16.6 cm

Therefore, he location of the pencil's image is = 16.6cm

Learn more about mirror here:

brainly.com/question/13164847

#SPJ1

You might be interested in
PART ONE
stira [4]

Answer:

3.64×10⁸ m

3.34×10⁻³ m/s²

Explanation:

Let's define some variables:

M₁ = mass of the Earth

r₁ = r = distance from the Earth's center

M₂ = mass of the moon

r₂ = d − r = distance from the moon's center

d = distance between the Earth and the moon

When the gravitational fields become equal:

GM₁m / r₁² = GM₂m / r₂²

M₁ / r₁² = M₂ / r₂²

M₁ / r² = M₂ / (d − r)²

M₁ / r² = M₂ / (d² − 2dr + r²)

M₁ (d² − 2dr + r²) = M₂ r²

M₁d² − 2dM₁ r + M₁ r² = M₂ r²

M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0

d² − 2d r + (1 − M₂/M₁) r² = 0

Solving with quadratic formula:

r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)

When we plug in the values, we get:

r = 3.64×10⁸ m

If the moon wasn't there, the acceleration due to Earth's gravity would be:

g = GM / r²

g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²

g = 3.34×10⁻³ m/s²

4 0
3 years ago
The motion of a free falling body is an example of __________ motion​
swat32

Answer:

accelerated

Explanation:

The motion of the body where the acceleration is constant is known as uniformly accelerated motion. The value of the acceleration does not change with the function of time.

4 0
3 years ago
Read 2 more answers
The rms current in an ac current is 3.6<br> a. find the maximum current
LUCKY_DIMON [66]
A peak = A Rms x Sq root 2

Therefore 3.6 x sq root of 2
A peak = 5.09
7 0
3 years ago
Two point charges 3q and −8q (with q &gt; 0) are at x = 0 and x = L, respectively, and free to move. A third charge is placed so
riadik2000 [5.3K]

Answer:

Explanation:

The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.

So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.

force on it due to rest of the charges will be equal and opposite so

k3q Q / x² =k 8q Q / (L+x)²

8x² = 3 (L+x)²

2√2 x = √3 (L+x)

2√2 x - √3 x = √3 L

x(2√2 - √3 ) = √3 L

x = √3 L / (2√2 - √3 )

Let us consider the balancing force on 3q

force on it due to -Q and -8q will be equal

kQ . 3q / x² = k3q  8q / L²

Q = 8q  (x² / L²)

so charge required = - 8q  (x² / L²)

and its distance from x on negative x side = √3 L / (2√2 - √3 )

3 0
3 years ago
0.0884 moles of a diatomic gas
Sloan [31]

Answer:

W = - 118.24 J (negative sign shows that work is done on piston)

Explanation:

First, we find the change in internal energy of the diatomic gas by using the following formula:

\Delta\ U = nC_{v}\Delta\ T

where,

ΔU = Change in internal energy of gas = ?

n = no. of moles of gas = 0.0884 mole

Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)

Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K

ΔT = Rise in Temperature = 18.8 K

Therefore,

\Delta\ U = (0.0884\ moles)(20.785\ J/mol.K)(18.8\ K)\\\Delta\ U = 34.54\ J

Now, we can apply First Law of Thermodynamics as follows:

\Delta\ Q = \Delta\ U + W

where,

ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)

W = Work done = ?

Therefore,

-83.7\ J = 34.54\ J + W\\W = -83.7\ J - 34.54\ J\\

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>

7 0
3 years ago
Read 2 more answers
Other questions:
  • Went to make a sandwich<br> what ingredients do I need
    15·1 answer
  • How does potential difference behave in a parallel circuit
    15·2 answers
  • A thermostat _____.
    15·1 answer
  • Liquid sodium can be used as a heat transfer fluid in some nuclear reactors due to its high thermal conductivity and low neutron
    6·1 answer
  • A particle moves along a circular path over a horizontal xy coordinate system, at constant speed. At time t1 = 4.50 s, it is at
    15·1 answer
  • Two charged metallic spheres of radii, R = 10 cms and R2 = 20 cms are touching each other. If the charge on each sphere is +100
    14·2 answers
  • A 100 Ω resistor is connected in series with a 47 µF capacitor and a source whose maximum voltage is 5 V, operating at 100.0 Hz.
    8·1 answer
  • Why was nuclear energy first developed?
    12·1 answer
  • Which best describes the motion of the object between 1
    11·1 answer
  • In which task is a camera the most useful?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!