S ?
U 0m/s
V ?
A 0.1m/s^2
T 2min (120 sec)
S=ut+0.5at^2
S=0(120 sec)+0.5(0.1m/s^2)(120 sec)^2
S=720m
Distance double 720m*2=1440m
V^2=u^2+2as
V^2=(0)^2+2(0.1 m/s^2)(1440m)
V^2=288
V= square root of 288=12 root 2=16.97 to 2 decimal places
Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




Acceleration = (change of speed) / (time for the change)
Change in speed = (22 - 4) = 18 m/s.
Time for the change = 3 sec.
Acceleration = 18/3 = 6 m/s per second.
Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)

The speed of a mechanical wave depends on the mechanical properties
of the medium through which the wave is traveling.
The speed of an electromagnetic wave depends on the electrical properties
of the medium through which the wave is traveling.
It's pretty well unanimous for choice <em>A</em> .