Explanation:
you can see this example to undersranding the question
Answer:
a. 4.733 × 10⁻¹⁹ J = 2.954 eV b i. yes ii. 0.054 eV = 8.651 × 10⁻²¹ J
Explanation:
a. Find the energy of the incident photon.
The energy of the incident photon E = hc/λ where h = Planck's constant = 6.626 × 10⁻³⁴ Js, c = speed of light = 3 × 10⁸ m/s and λ = wavelength of light = 420 nm = 420 × 10⁻⁹ m
Substituting the values of the variables into the equation, we have
E = hc/λ
= 6.626 × 10⁻³⁴ Js × 3 × 10⁸ m/s ÷ 420 × 10⁻⁹ m
= 19.878 × 10⁻²⁶ Jm ÷ 420 × 10⁻⁹ m
= 0.04733 × 10⁻¹⁷ J
= 4.733 × 10⁻¹⁹ J
Since 1 eV = 1.602 × 10⁻¹⁹ J,
4.733 × 10⁻¹⁹ J = 4.733 × 10⁻¹⁹ J × 1 eV/1.602 × 10⁻¹⁹ J = 2.954 eV
b. i. Is this energy enough for an electron to leave the atom
Since E = 2.954 eV is greater than the work function Ф = 2.9 eV, an electron would leave the atom. So, the answer is yes.
ii. What is its maximum energy?
The maximum energy E' = E - Ф = 2.954 - 2.9
= 0.054 eV
= 0.054 × 1 eV
= 0.054 × 1.602 × 10⁻¹⁹ J
= 0.08651 × 10⁻¹⁹ J
= 8.651 × 10⁻²¹ J
A stereotaxic atlas is used to determine where an implanted electrode is to be placed in a brain in 3-dimensions. A stereotaxic atlas is used for doing a stereotactic surgery in order to cure the disorder occurred in the brain. This tool increase the accuracy, reliability, and the measurement of the brain because it gives the accurate brain map<span>.</span>
Answer:
1400 N
Explanation:
Change in momentum equals impulse which is a product of force and time
Change in momentum is given by m(v-u)
Equating this to impulse formula then
m(v-u)=Ft
Making F the subject of the formula then

Take upward direction as positive then downwards is negative
Substituting m with 0.3 kg, v with 2 m/s, and u with -5 m/s and t with 0.0015 s then
