Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
The salesman is telling you the average magnitude of the car's acceleration.
| Acceleration | = (change in speed) / (time for the change)
| Acceleration | = (60 mi/hr) / (6 sec)
| Acceleration | = 10 miles/hr-sec
That would be 36,000 miles per hour squared,
or 0.0028 mile per second squared.
A displacement is a vector quantity that takes into account the shortest distance from the starting point to the endpoint.
The given above gave a time interval in minutes which needs to be converted to seconds. Given that each minute is 60 seconds, 5 minutes equal 300 seconds. To determine the distance, multiply time with speed. The product is 225 m.
Thus, the displacement is 225 m.
The boy’s foot causes the motion. His foot is the one that causes the ball to roll down the hill.