Answer:
I think it's
there are the same number of molecules on each side of the equation, then a change of pressure makes no difference to the position of equilibrium
Answer:
Explanation:
Given parameters:
Mass of aluminium oxide = 3.87g
Mass of water = 5.67g
Unknown:
Limiting reactant = ?
Solution:
The limiting reactant is the reactant in short supply in a chemical reaction. We need to first write the chemical equation and convert the masses given to the number of moles.
Using the number of moles, we can ascertain the limiting reactants;
Al₂O₃ + 3H₂O → 2Al(OH)₃
Number of moles;
Number of moles = 
molar mass of Al₂O₃ = (2x27) + 3(16) = 102g/mole
number of moles =
= 0.04mole
molar mass of H₂O = 2(1) + 16 = 18g/mole
number of moles =
= 0.32mole
From the reaction equation;
1 mole of Al₂O₃ reacted with 3 moles of H₂O
0.04 mole of Al₂O₃ will react with 3 x 0.04 mole = 0.12 mole of H₂O
But we were given 0.32 mole of H₂O and this is in excess of amount required.
This shows that Al₂O₃ is the limiting reactant
Balanced chemical equation:
2 C2H2 + 5 O2 = 4 CO2 + 2 H2O
2 moles C2H2 ---------------- 5 moles O2
moles C2H2 ------------------ 84 moles O2
moles C2H2 = 84 * 2 / 5
molesC2H2 = 168 / 5 => 33.6 moles of C2H2
THE ANSWER IS: <u>737.5</u>
I JUST TOOK THE QUIZ!!!!
Amphiprotic compounds are able to both donate and accept a proton.
Amphiprotic compounds contain a hydrogen atom and lone pair of valence electron.
For example, HSO₃⁻ (hydrogen sulfate ion) is an amphiprotic compound.
Balanced chemical equation for reaction when HSO₃⁻ donate protons to water:
HSO₃⁻(aq) + H₂O(l) ⇄ SO₄²⁻(aq) + H₃O⁺(aq).
Ka = [SO₄²⁻] · [H₃O⁺] / [HSO₃⁻]
Balanced chemical equation for reaction when HSO₃⁻ accepts protons from water:
HSO₃⁻(aq) + H₂O(l) ⇄ H₂SO₄(aq) + OH⁻(aq).
Kb = [H₂SO₄] · [OH⁻] / [HSO₃⁻]
Water (H₂O), amino acids, hydrogen carbonate ions (HCO₃⁻) are examples of amphiprotic species.
Another example, water is an amphiprotic substance:
H₂O + HCl → H₃O⁺ + Cl⁻
H₂O + NH₃ → NH₄⁺ + OH⁻
More about amphiprotic compounds: brainly.com/question/3421406
#SPJ4