The number of protons and neutrons combined in an atom is called the mass number.
<u>Answer:</u> The final temperature of water is 32.3°C
<u>Explanation:</u>
When two solutions are mixed, the amount of heat released by solution 1 (liquid water) will be equal to the amount of heat absorbed by solution 2 (liquid water)

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of solution 1 (liquid water) = 50.0 g
= mass of solution 2 (liquid water) = 29.0 g
= final temperature = ?
= initial temperature of solution 1 = 25°C = [273 + 25] = 298 K
= initial temperature of solution 2 = 45°C = [273 + 45] = 318 K
c = specific heat of water= 4.18 J/g.K
Putting values in equation 1, we get:
![50.0\times 4.18\times (T_{final}-298)=-[29.0\times 4.18\times (T_{final}-318)]\\\\T_{final}=305.3K](https://tex.z-dn.net/?f=50.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-298%29%3D-%5B29.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-318%29%5D%5C%5C%5C%5CT_%7Bfinal%7D%3D305.3K)
Converting this into degree Celsius, we use the conversion factor:


Hence, the final temperature of water is 32.3°C
we can differentiate a heterozygous individual from a homozygote by analyzing their alleles. If the alleles in the homologous chromosomes are the same, we say that it is a homozygote. If the alleles are different, the individual is heterozygous.
The answer is: the mass of oxygen is 16.95 grams.
The overall balanced photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂.
m(C₆H₁₂O₆) = 15.90 g; mass of glucose.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 15.9 g ÷ 180.18 g/mol.
n(C₆H₁₂O₆) = 0.088 mol; amount of glucose.
From chemical reaction: n(C₆H₁₂O₆) : n(O₂) = 1 : 6.
n(O₂) = 6 · 0.088 mol.
n(O₂) = 0.53 mol; amount of oxygen.
m(O₂) = 0.53 mol · 32.00 g/mol.
m(O₂) = 16.95 g; mass of oxygen.
Answer:
there are four peaks in the 13c NMR (B)