Answer:

Explanation:
To convert from representative particles to moles, Avogadro's Number: 6.02*10²³, which tells us the number of particles (atoms, molecules, etc.) in 1 mole of a substance.
We can use it in a ratio.

Multiply by the given number of molecules.

Flip the ratio so the molecules of water cancel out.



Divide.

The original number of molecules has 2 significant figures: 3 and 1, so our answer must have the same. For the number we calculated, that is the tenth place. The 4 in the hundredth place tells us to leave the 1.

There are about 5.1 moles of water in 3.1*10²⁴ molecules of water.
Answer:
P₂ = 5000 KPa
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 50.0 KPa
Final volume = 20.0 mL (20/1000=0.02 L)
Final pressure = ?
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
50.0 KPa × 2.00L = P₂ × 0.02 L
P₂ = 100 KPa. L/0.02 L
P₂ = 5000 KPa
It is known that chemistry is a BIG part of our everyday lives. You can find chemistry in daily life in foods you eat, air you breathe, soap, your emotions and literally every object you can see or touch. For example, Chemistry explains how food changes as you cook it, how it rots, how to preserve food, how your body uses the food you eat, and how ingredients interact to make food.
Hope it helps! :)
If H+ would have to dissociate from a substance and must be the only positive ion in the solution that substance must be an acid.
CH3CHO is an aldehyde called acetaldehyde.
CH3CH2OH is an alcohol called ethanol
CH3OCH3 is an ether called dimethyl ether.
and finally, the answer CH3COOH is a weak acid called acetic acid.
Answer:
0.8 mL of protein solution, 9.2 mL of water
Explanation:
The dilution equation can be used to relate the concentration C₁ and volume V₁ of the stock/undiluted solution to the concentration C₂ and volume V₂ of the diluted solution:
C₁V₁ = C₂V₂
We would like to calculate the value for V₁, the volume of the inital solution that we need to dilute to make the required solution.
V₁ = (C₂V₂) / C₁ = (2mg/mL x 10mL) / (25 mg/mL) = 0.8 mL
Thus, a volume of 0.8 mL of protein solution should be diluted with enough water to bring the total volume to 10 mL. The amount of water needed is:
(10 mL - 0.8 mL) = 9.2 mL