The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
We want to relate the solubility of a gas with its partial pressure.
We can do so using Henry's law.
<h3>What does Henry's law state?</h3>
Henry's law states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.
C = k × P
where,
- C is the concentration of a dissolved gas.
- k is the Henry's Law constant.
- P partial pressure of the gas.
The solubility of nitrogen gas is 1.90 mL/dL of blood at 1.00 atm.
Since the solvent is basically water, we can understand that the concentration of nitrogen gas is 1.90 mL/dL at 1.00 atm.
We can use this information to calculate Henry's Law constant.
k = C/P = (1.90 mL/dL)/1.00 atm = 1.90 mL/dL.atm
We want to calculate the solubility of nitrogen gas at a pressure of 7.00 atm.
We will use Henry's law.
C = k × P = (1.90 mL/dL.atm) × 7.00 atm = 13.3 mL/dL
The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.
Learn more about solubility here: brainly.com/question/11963573
Answer: Convection, Conduction, and radiation
***If you found my answer helpful, please give me the brainliest. :) ****
Answer:
Average of measurements = 20.97 cm
Explanation:
Given data:
Three measurements of pete's = 20.9 cm, 21.0 cm, 21.0 cm.
Average value of measurements = ?
Formula:
Average of measurements = sum of all measurements / Total number of measurements
Solution:
Average of measurements = 20.9 cm + 21.0 cm + 21.0 cm. / 3
Average of measurements = 62.9 cm / 3
Average of measurements = 20.97 cm
Answer: 2.17 x 10^23 molecules
Explanation:
1mole of H2O contains 6.02x10^23 molecules.
Therefore 0.360mole of H2O will contain = 0.36 x 6.02x10^23 = 2.17 x 10^23 molecules