Answer:
105.8 m
46 m/s
Explanation:
From the time the rocket is launched to the time it reaches its maximum height:
v = 0 m/s
a = -10 m/s²
t = 9.2 s / 2 = 4.6 s
Find: Δy and v₀
Δy = vt − ½ at²
Δy = (0 m/s) (4.6 s) − ½ (-10 m/s²) (4.6 s)²
Δy = 105.8 m
v = at + v₀
0 m/s = (-10 m/s²) (4.6 s) + v₀
v₀ = 46 m/s
Answer:
5235.84 kg
Explanation:
There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.
As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh,
;

The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />