Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0
Answer:
the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
Explanation:
Given that
m₁=4.4kg
x₁=+1.1m
m₂=3.7kg
x₂=+0.80m
m₃=2.9kg
x₃=+1.6m
The position of the center of mass is
Xcm = [m₁x₁ +m₂x₂ +m₃x₃]/(m₁+m₂+m₃)
= [(4.40kg)(1.1 m)+(3.70 kg)(0.80 m)+(2.90 kg)(1.60 m)]/(4.4 kg + 3.70 kg+2.90 kg)
= 1.13 m
The position of the center of gravity is 1.13m
Therefore, the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
Answer:
<u>So the correct answer is letter e)</u>
Explanation:
The electric field of an infinite yz-plane with a uniform surface charge density (σ) is given by:

Where ε₀ is the electric permitivity.
<u>As we see, this electric field does not depend on distance, so the correct answer is letter e)</u>
I hope it helps you!
The force he must exert is 300 N