The difference between the two is, well for one
Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
<em>It may confuse you but it makes sense to me (Sorry)</em>
Models help us to understand systems and their properties
The missing word here is <u>Asthenosphere.</u><u> </u>
The convection in the asthenosphere directly propels the tectonic plates of the earth.
Did you know that the asthenosphere is thought to remain malleable because of heat from deep within the Earth? It is thought to be lubricating the earth's tectonic plates' undersides and enabling movement.
The older, denser portions of the lithosphere that are dragged downward in subduction zones are stored in the asthenosphere, according to the theory of plate tectonics.
The lithosphere above is stressed by convection currents, and the cracking that frequently results manifests as earthquakes.
Magma is forced upward through volcanic vents and spreading centers by convection currents produced within the asthenosphere, which also results in the formation of new crust.
Learn why properties of the asthenosphere are important: brainly.com/question/11484043
#SPJ4
Answer:
Longitudinal wave is a type of wave in which the the movement of the wave particle is parallel to the direction of the wave propagation. This simply means that the wave particles is in the same or opposite direction to the wave propagation.
B. Sound waves- These are longitudinal waves because its medium particles through which the sound is transported oscillates parallel to the direction of the movement of the sound wave.