Answer:
If the light were incident upon two polarizers at right angles, no light would get thru - thus each polarizer must block 50% of the light.
One polarizer would allow 50% of the light to pass.
Answer:
a)
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
the required distance is 40.98 m
Explanation:
Given that;
velocity of the river u = 1.70 m/s
velocity of boat v = 14.0 m/s
Now to get the velocity of the boat relative to shore;
( north of east), we say
a² + b² = c²
(1.70)² + (14.0)² = c²
2.89 + 196 = c²
198.89 = c²
c = √198.89
c = 14.1028 m/s
tan∅ = v/u = 14 / 1.7 = 8.23529
∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east
Therefore, the velocity of the boat relative to shore is;
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
width of river = 340 m,
ow far downstream has the boat moved by the time it reaches the north shore in meters = ?
we say;
340sin( 90° - 83.0765°)
⇒ 340sin( 6.9235°)
= 40.98 m
Therefore, the required distance is 40.98 m
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>