Force between two charges =
( 1/4πε₀ ) · (Charge #1) · (Charge #2) / (Distance between them)²
in the direction away from each other.
In other words, if the force is positive, the charges are repelling.
If the force is negative, the charges are attracting.
5.7 kilometers is equal to 3.5418157957528034 miles
Atomic disguise makes helium look like hydrogen. ... A helium atom consists of a nucleus containing two positively charged protons and two neutrons, encircled by two orbiting electrons which carry a negative charge. A hydrogen atom has just one proton and one electron
Since the electron dropped from an energy level i to the ground state by emitting a single photon, this photon has an energy of 1.41 × 10⁻¹⁸ Joules.
<h3>How to calculate the photon energy?</h3>
In order to determine the photon energy of an electron, you should apply Planck-Einstein's equation.
Mathematically, the Planck-Einstein equation can be calculated by using this formula:
E = hf
<u>Where:</u>
In this scenario, this photon has an energy of 1.41 × 10⁻¹⁸ Joules because the electron dropped from an energy level i to the ground state by emitting a single photon.
Read more on photons here: brainly.com/question/9655595
#SPJ1
Answer:
the ball travelled approximately 60 m towards north before stopping
Explanation:
Given the data in the question;
First course :
= 0.75 m/s²,
= 20 m,
= 10 m/s
now, form the third equation of motion;
v² = u² + 2as
we substitute
² = (10)² + (2 × 0.75 × 20)
² = 100 + 30
² = 130
= √130
= 11.4 m/s
for the Second Course:
= 11.4 m/s,
= -1.15 m/s²,
= 0
Also, form the third equation of motion;
v² = u² + 2as
we substitute
0² = (11.4)² + (2 × (-1.15) ×
)
0 = 129.96 - 2.3
2.3
= 129.96
= 129.96 / 2.3
= 56.5 m
so;
|d| = √(
² +
² )
we substitute
|d| = √( (20)² + (56.5)² )
|d| = √( 400 + 3192.25 )
|d| = √( 3592.25 )
|d| = 59.9 m ≈ 60 m
Therefore, the ball travelled approximately 60 m towards north before stopping