First, find the work done. W = f*d, so 160 N * 1 m = 160 J. Then divide the work by the time to get the power. P = W/t. P = 160 J / 0.5 s = 320 W.
The answer is 320 W. Hope this helps, and have a great day! :)
The difference in the pressure between the inside and outside will be 369.36 N/m²
<h3>What is pressure?</h3>
The force applied perpendicular to the surface of an item per unit area across which that force is spread is known as pressure.
It is denoted by P. The pressure relative to the ambient pressure is known as gauge pressure.
The given data in the problem is;
dP is the change in the presure=?
Using Bernoulli's Theorem;

Hence, the difference in the pressure between the inside and outside will be 369.36 N/m²
To learn more about the pressure refer to the link;
brainly.com/question/356585
#SPJ1
Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:

Answer:
William Gilbert
Explanation:
first described the Earth as a giant dipole magnet 400 years ago. But, as Rod Wilson recounts, he did far more than this.