Answer:
C.
Explanation:
It's becase of the gavitational pull of a star or sun
A, B, and C because they all equal 5.6 cm and it’s not close to 6.
Answer:
Fatty Acids
A lipid is an organic compound such as fat or oil. Organisms use lipids to store energy, but lipids have other important roles as well. Lipids consist of repeating units called fatty acids. Fatty acids are organic compounds that have the general formula CH3(CH2)nCOOH" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 17.6px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">CH3(CH2)nCOOHCH3(CH2)nCOOH, where n" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 17.6px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">nn usually ranges from 2 to 28 and is always an even number. There are two types of fatty acids: saturated fatty acids and unsaturated fatty acids.
Saturated Fatty Acids
In saturated fatty acids, carbon atoms are bonded to as many hydrogen atoms as possible. This causes the molecules to form straight chains, as shown in the figure below. The straight chains can be packed together very tightly, allowing them to store energy in a compact form. This explains why saturated fatty acids are solids at room temperature. Animals use saturated fatty acids to store energy.
Figure 14.2.1" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">14.2.114.2.1: Structures of saturated and unsaturated fatty acids.
Unsaturated Fatty Acids
In unsaturated fatty acids, some carbon atoms are not bonded to as many hydrogen atoms as possible due to the presence of one or more double bonds in the carbon chain. Instead, they are bonded to other groups of atoms. Wherever carbon binds with these other groups of atoms, it causes chains to bend (see figure above). The bent chains cannot be packed together very tightly, so unsaturated fatty acids are liquids at room temperature. Plants use unsaturated fatty acids to store energy.
Figure 14.2.2" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">14.2.214.2.2: Saturated fatty acids have only single bonds while monounsaturated fats have one double bond and polyunsaturated fats have more than one double bond.
Lipids and Diet
Unsaturated fat is generally considered to be healthier because it contains fewer calories than an equivalent amount of saturated fat. Additionally, high consumption of saturated fats is linked to an increased risk of cardiovascular disease. Some examples of foods with high concentrations of saturated fats include butter, cheese, lard, and some fatty meats. Foods with higher concentrations of unsaturated fats include nuts, avocado, and vegetable oils such as canola oil and olive oil.
From a stock solution of 3.00 m nitric acid, 9.391 ml of stock solution is needed to create a 0.161 m nitric acid solution, which has a total volume of 175 ml of the diluted solution.
A chemical reagent is present in vast quantities as a stock solution. It has a uniform concentration. Examples of typical stock solutions in laboratories are nitric acid and hydrochloric acid. These play a critical role in creating the titration-related solution preparations.
We know the formula for dilution type problems
M1 VI = M2 V 2
Where,
M, = initial molarity
V , = initial Volume
M2 = final molarity
V 2 = final Volume
Hene given -
M, = 3.00 M
VI = ?
M2 = 0.161M
V 2 = 175 ml
Accordingly ' MI V1 = M2 V 2
V1 =
V1= (0.161M*175ml)/ 3.00M
v1 = 9.391
The required volume of Stock solution is 9.391ml.
Learn more about Stock solution here
brainly.com/question/25256765
#SPJ4