Agitation, or stirring of the solute in the solvent increases the solubility of the solution
1) mass composition
N: 30.45%
O: 69.55%
-----------
100.00%
2) molar composition
Divide each element by its atomic mass
N: 30.45 / 14.00 = 2.175 mol
O: 69.55 / 16.00 = 4.346875
4) Find the smallest molar proportion
Divide both by the smaller number
N: 2.175 / 2.175 = 1
O: 4.346875 / 2.175 = 1.999 = 2
5) Empirical formula: NO2
6) mass of the empirical formula
14.00 + 2 * 16.00 = 46.00 g
7) Find the number of moles of the gas using the equation pV = nRT
=> n = pV / RT = (775/760) atm * 0.389 l / (0.0821 atm*l /K*mol * 273.15K)
=> n = 0.01769 moles
8) Find molar mass
molar mass = mass in grams / number of moles = 1.63 g / 0.01769 mol = 92.14 g / mol
9) Find how many times the mass of the empirical formula is contained in the molar mass
92.14 / 46.00 = 2.00
10) Multiply the subscripts of the empirical formula by the number found in the previous step
=> N2O4
Answer: N2O4
Answer:
CH4 + 2 O2 → CO2 + 2 H2O
Explanation:
There are one mole of O2 on the left side and on the right side there are three moles of O2. And to fix it you would need to make it two moles of O2 to have four molecules of O2 on the left side. Then you would make two moles of H2O to have a total of four moles of O2 on the right. Therefore, CH4 + 2 O2 → CO2 + 2 H2O is the answer.
Answer:
Identifying whether or not an element is an ion is a very simple process. Identify the charge of the element. ... The number of electrons is equal to the atomic number minus the charge of the atom. Refer to an element with either a positive or negative charge as an ion.