The kinetic energy of the tomato is :
K.E = 1/2 mv^2
K.E = 1/2 x 0.18 kg x 11 m/S^2
K.E = 0.99
Hope this helps
Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.
Answer: 
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
where,
= initial pressure of gas at STP = 1 atm
= final pressure of gas = 2.67 atm
= initial volume of gas =
= final volume of gas = ?
= initial temperature of gas at STP =
= final temperature of gas =
Now put all the given values in the above equation, we get:

Thus the final volume will be 
Hello!!
For the maximum height the final velocity is zero, <u>because can't up more.</u>
Then, use the formula:
V = Vi + gt
Replacing, we have:
0 m/s = 5,3 m/s + (-9,8 m/s² * t)
0 m/s - 5,3 m/s = -9,8 m/s² * t
(-5,3 m/s) / -9,8 m/s² = t
t = 0,54 s
The time it will take to reach the maximum height is <u>0,54 seconds.</u>
Answer:
The height of the building is approximately 156.58 m
Explanation:
The mass of the ball dropped from rest from the building top = 0.660 kg
The time in which the ball falls, t = 5.65 seconds
The height, h, of the building is given from the following equation of motion;
h = u·t + ¹/₂·g·t²
Where;
u = The initial velocity of the ball = 0 m/s
g = The acceleration due to gravity = 9.81 m/s²
Plugging in the values, we have;
h = 0 × 5.65 + ¹/₂ × 9.81 × 5.65² ≈ 156.58 m
The height of the building, h ≈ 156.58 m.