Answer:
t = 3.94 s
Explanation:
This can be modeled as a case of free fall motion. Because, the falcon is going down with acceleration, that is equal to acceleration due to gravity. To find the time taken by the falcon to intercept the pigeon, we will use second equation of motion for vertical direction:

where,
h = height = 76 m
vi = initial speed of falcon = 0 m/s
t = time required = ?
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>t = 3.94 s</u>
Answer:
(b) 32.2°
Explanation:
Using Snell's law as:
Where,
is the angle of incidence ( 30.0° )
is the angle of refraction ( ? )
is the refractive index of the refraction medium (Material B, n=5 / 4)
is the refractive index of the incidence medium (Material A, n=4 / 3)
Hence,
Angle of refraction =
= 32.2°
Given that,
Time = 0.5 s
Acceleration = 10 m/s²
(I). We need to calculate the speed of apple
Using equation of motion

Where, v = speed
u = initial speed
a = acceleration
t = time
Put the value into the formula


(III). We need to calculate the height of the branch of the tree from the ground
Using equation of motion

Put the value into the formula


(II). We need to calculate the average velocity during 0.5 sec
Using formula of average velocity


Where,
= final position
= initial position
Put the value into the formula


Hence, (I). The speed of apple is 5 m/s.
(II). The average velocity during 0.5 sec is 2.5 m/s
(III). The height of the branch of the tree from the ground is 1.25 m.
Answer:
false 20 n x 0.32 m = 6.4 J