Answer:

Explanation:
There are two heat flows in this process and, since energy (heat) can neither be destroyed nor created, the energy change for the system must equal zero.
Data:
For Fe, m₁ = ?; C₁ = 0.452 J°C⁻¹g⁻¹; Ti = 2.00 °C; T_f = 21.50 °C
For H₂O, m₂ = 120 g; C₂ = 4.18 J°C⁻¹g⁻¹; Ti = 22.00 °C; T_f = 21.50 °C
Calculations:
1. Temperature changes
ΔT₁ = T_f - Ti = 21.50 °C - 2.00 °C = 19.50 °C
ΔT₂ = T_f - Ti = 21.50 °C - 22.00 °C = -0.50 °C
2. Mass of steel rod


Answer:


Explanation:
Hello,
In this case, for the calculation of the temperature in degree Celsius we subtract 273.15 to the given temperature in kelvins:

Next, by applying the following equation we compute it in degree Fahrenheit:

Clearly, since the initial unit has two significant figures the computed units also show two significant figures.
Regards.
Answer is (D) - It is exothermic and will have a negative enthalpy.
If the reactants are at a higher potential energy compared to the products, it means reactants have more energy than the products. That energy is released to the environment as heat. Due to the releasing of heat to the surrounding, the reaction is exothermic. Since the reaction is exothermic; the enthalpy of the reaction will be negative value.
Many acids will react with a metal to produce hydrogen gas and a metal salt.
Hope this helped :)