Power is calculated as work per unit time, and work in turn is calculated as force multiplied by distance. In this case, the force required is equivalent to the weight of the barbell multiplied by acceleration due to gravity.
P = W/t = Fd/t = mgd/t = (200 kg)(9.81 m/s^2)(2 m)/2.2 s = 1783.64 Watts.
Answer:
C. Momentum is conserved but not kinetic energy.
Explanation:
This case represents an entirely inelastic collision, that is, a collision between the car and the truck that reduces total kinetic energy of the entire system, whereas linear momentum is conserved. Hence, correct answer is C.
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
the cycle of processes by which water circulates between the earth's oceans, atmosphere and land involving precipitation as rain and snow drainage in streams and rivers and return to the atmosphere by evaporation and transpiration.
Hope this gives you a little bit more information!
Evaporation (or another word to use is water vapor.)