Answer:
H₂O + CO₂ → H₂CO₃
Option D is correct.
Law of conservation of mass:
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two H and two O atoms present on left side while on right side only one O and two H atoms are present so mass in not conserved. This option is incorrect.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side of equation while on right side two H, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. This option is correct.
<span><span>Yes.
An element that is highly electronegative pulls more on the electrons
in a bond, such as oxygen in H20. This creates a polar bond, where
there is a small negative charge on the oxygen, and a small positive
charge in between the hydrogens.
</span>Credit goes to "Erin M" answered on yahoo answers a decade ago.
</span>
。☆✼★ ━━━━━━━━━━━━━━ ☾
I believe the answer would be A. equal temperature
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾