Answer:
identify the atoms on each side
count the atoms on its side
use coefficients to increase the atoms on each side
check to make sure you have the same number of each type of atom on each side
Answer:
Antifreeze is whats used to keep your engine cool without freezing.
Explanation:
it keeps the engine from overheating.
It also prevents corrosion.
Here is a quote from google "Antifreeze works because the freezing and boiling points of liquids are “colligative” properties. This means they depend on the concentrations of “solutes,” or dissolved substances, in the solution. A pure solution freezes because the lower temperatures cause the molecules to slow down"
That quote is from "The Science Behind Antifreeze"
If you have any questions feel free to ask in the comments.
Answer:
NH4Br + AgNO3 —> AgBr + NH4NO3
Explanation:
When ammonium bromide and silver(I) nitrate react, the following are obtained as shown below:
NH4Br(aq) + AgNO3(aq) —>
In solution, NH4Br(aq) and AgNO3(aq) will dissociate as follow:
NH4Br(aq) —> NH4+(aq) + Br-(aq)
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
The double displacement reaction will occur as follow:
NH4+(aq) + Br-(aq) + Ag+(aq) + NO3-(aq) —> Ag+(aq) + Br-(aq) + NH4+(aq) + NO3-(aq)
NH4Br(aq) + AgNO3(aq) —> AgBr(s) + NH4NO3(aq)
Answer:
See explanation
Explanation:
1) Physical change is usually reversible, while chemical change isn't
2) Chemical change involves the change of chemical composition of matter while physical change doesn't
Answer:
The answer to your question is
1.-Fe₂O₃
2.- 280 g
3.- 330 g
Explanation:
Data
mass of CO = 224 g
mass of Fe₂O₃ = 400 g
mass of Fe = ?
mass of CO₂
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
1.- Calculate the molar mass of Fe₂O₃ and CO
Fe₂O₃ = (56 x 2) + (16 x 3) = 160 g
CO = 12 + 16 = 28 g
2.- Calculate the proportions
theoretical proportion Fe₂O₃ /3CO = 160/84 = 1.90
experimental proportion Fe₂O₃ / CO = 400/224 = 1.78
As the experimental proportion is lower than the theoretical, we conclude that the Fe₂O₃ is the limiting reactant.
3.- 160 g of Fe₂O₃ --------------- 2(56) g of Fe
400 g of Fe₂O₃ --------------- x
x = (400 x 112) / 160
x = 280 g of Fe
4.- 160 g of Fe₂O₃ --------------- 3(44) g of CO₂
400 g of Fe₂O₃ -------------- x
x = (400 x 132)/160
x = 330 gr