I think the answer you're looking for is digestion.
Answer:
Vapour pressure of cyclohexane at 50°C is 490torr
Vapour pressure of benzene at 50°C is 90torr
Explanation:
Using Raoult's law, pressure of a solution is defined by the sum of the product sbetween mole fraction of both solvents and pressure of pure solvents.

In the first solution:


<em>(1)</em>
For the second equation:


<em>(2)</em>
Replacing (2) in (1):


-122.5torr = -0.250P°A

<em>Vapour pressure of cyclohexane at 50°C is 490torr</em>
And for benzene:


<em>Vapour pressure of benzene at 50°C is 90torr</em>
The
Earth is composed of four different layers. Many geologists believe
that as the Earth cooled the heavier, denser materials sank to the
center and the lighter materials rose to the top. Because of this, the
crust is made of the lightest materials (rock- basalts and granites) and
the core consists of heavy metals (nickel and iron).
<span>The crust is the layer that you live on, and it is the most widely studied and understood. The mantle
is much hotter and has the ability to flow. The Outer and Inner Cores
are hotter still with pressures so great that you would be squeezed into
a ball smaller than a marble if you were able to go to the center of
the Earth!!!!!!</span>
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!