Answer:
1. four in the first energy level, four in the second energy level
2. eight in the first energy level, zero in the second energy level
3. zero in the first energy level, eight in the second energy level
4. two in the first energy level, six in the second energy level *
Explanation:
1. four in the first energy level, four in the second energy level
2. eight in the first energy level, zero in the second energy level
3. zero in the first energy level, eight in the second energy level
4. two in the first energy level, six in the second energy level *
You must use 2.50 mL of the concentrated solution to make 10.0 mL of the dilute solution.
We can use the dilution formula
<em>V</em>_1<em>C</em>_1 = <em>V</em>_2<em>C</em>_2
where
<em>V</em> represents the volumes and
<em>C</em> represents the concentrations
We can rearrange the formula to get
<em>V</em>_2 = <em>V</em>_1 × (<em>C</em>_1/<em>C</em>_2)
<em>V</em>_1 = 10.0 mL; <em>C</em>_1 = 5.00 g/100. mL
<em>V</em>_2 = ?; ____<em>C</em>_2 = 20.0 g/100. mL
∴ <em>V</em>_2 = 10.0 mL × [(5.00 g/100. mL)/(20.0 g/100. mL)] = 10.0 mL × 0.250
= 2.50 mL
Answer:
mixture is amino acid, peptides, carbohydrates and other simple organic compounds can be separated by paper chromatography.
Answer:
1.18 moles of CS₂ are produced by the reaction.
Explanation:
We present the reaction:
5C + 2SO₂ → CS₂ + 4CO
5 moles of carbon react to 2 moles of sulfur dioxide in order to produce 1 mol of carbon disulfide and 4 moles of carbon monoxide.
As we do not have data from the SO₂, we assume this as the excess reagent. We convert the mass of carbon to moles:
70.8 g / 12 g/mol = 5.9 moles
Ratio is 5:1, so 5 moles of carbon react to produce 1 mol of CS₂
Then, 5.9 moles will produce (5.9 . 1) / 5 = 1.18 moles