Answer:
The reaction can produce 287 grams of iron(II) carbonate
Explanation:
To solve this question we must find the moles of iron(II) chloride that react. Using the chemical equation we can find the moles of iron(II) carbonate and its mass -Molar mass FeCO3: 115.854g/mol-
<em>Moles FeCl2:</em>
1.24L * (2.00mol / L) = 2.48 moles FeCl2
As 1 mol FeCl2 produce 1 mol FeCO3, the moles of FeCO3 = 2.48 moles
<em>Mass FeCO3:</em>
2.48mol * (115.854g / mol) =
<h3>The reaction can produce 287 grams of iron(II) carbonate</h3>
<span>it is A. Mendeleev observed that tellurium has chemical....</span>
Answer:
15.5g
Explanation:
"The total mass of both chemicals and the containers they are in is 15.5 g." After a chemical reaction, by conservation of mass, the total mass of the products and the two containers after reaction is the same at 15.5g.
Which of the following terms best describes the nucleus of a radioactive element?
C. Unstable
Answer:
H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)
Explanation:
Let's consider the molecular equation that occurs when aqueous solutions of hydrofluoric acid and potassium hydroxide are combined. This is a neutralization reaction.
HF(aq) + KOH(aq) ⇒ KF(aq) + H₂O(l)
The complete ionic equation includes all the ions and molecular species.
H⁺(aq) + F⁻(aq) + K⁺(aq) + OH⁻(aq) ⇒ K⁺(aq) + F⁻(aq) + H₂O(l)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)