The balanced equation for the above reaction is
2K₃PO₄ + 3NiCl₂ ---> 6KCl + Ni₃(PO₄)₂
stoichiometry of K₃PO₄ to NiCl₂ is 2:3
the number of NiCl₂ moles reacted - 0.0110 mol/L x 0.154 L = 1.69 x 10⁻³ mol
if 3 mol of NiCl₂ reacts with - 2 mol of K₃PO₄
then 1.69 x 10⁻³ mol of NiCl₂ reacts with - 2/3 x 1.69 x 10⁻³ = 1.13 x 10⁻³ mol of K₃PO₄
molarity of K₃PO₄ solution given - 0.205 M
there are 0.205 mol in 1 L
therefore 1.13 x 10⁻³ mol are in - 1.13 x 10⁻³ mol / 0.205 mol/L = 5.51 mL
volume of K₃PO₄ required - 5.51 mL
No matter how big or little a material is, its properties remain the same. Size, form, color, and mass are the qualities that distinguish a material from non-substances. All of these qualities, including size, shape, color, and mass, can be seen and measured. Some characteristics are physical, while others are chemical. Physical characteristics include mass, volume, density, and color. Viscosity and solubility are examples of chemical qualities.
Unless you are talking about one specific theory, the answer is pseudoscience.
Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J