Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.
A. Internal. Most cars use that type of set up because it's more efficient, you can find more about it on this website, https://auto.howstuffworks.com/did-cars-ever-have-external-combustion-engines.htm
:)
~ Ria
Answer: 0.006in/s
Explanation:
Let the rate at which air is being blown into a spherical balloon be dV/dt which is 1.68in³/s
Also let the rate at which the radius of the balloon is increasing be dr/dt
Given r = 4.7in and Π = 3.14
Applying the chain rule method
dV/dt = dV/dr × dr/dt
If the volume of the sphere is 4/3Πr³
V = 4/3Πr³
dV/dr = 4Πr²
If r = 4.7in
dV/dr = 4Π(4.7)²
dV/dr = 277.45in²
Therefore;
1.68 = 277.45 × dr/dt
dr/dt = 1.68/277.45
dr/dt = 0.006in/s
Answer:
-387883.3 m/s²
0.000286168546055 seconds
Explanation:
t = Time taken
u = Initial velocity = 370 m/s
v = Final velocity = 259 m/s
s = Displacement = 9 cm
a = Acceleration

The acceleration of the bullet is -387883.3 m/s²

The time taken is 0.000286168546055 seconds
I don't think the shaping of the beach or hill would be considered
weathering, especially since it says "as smaller particles are moved
away". This one is just talking about where the particles decide to
gather and make a shape.
'C' is really talking about weathering, where rocks are broken up into
stones, and the stones into smaller pieces that can be blown away
on the wind. THAT's weathering.