Answer
When an electron makes transition from a state of higher energy to a state of lower energy it does so by emitting energy in form of radiation in the visible spectrum of light.
Since the basic postulates of the atomic theory is that the energy that the electron possess in it's orbit's takes only discrete values and cannot take any random value thus when an electron makes a transition from a state of higher energy to state of lower energy it will emit radiation with energy equal to difference between the energy levels of the 2 orbit's thus we only observe discrete lines.
Mathematically when an electron makes a transition between states the wavelength of light it releases is given by

where
is Rydberg constant
is upper energy level
is lower energy level
thus we can see that only discrete wavelength's are released and not continuous wavelength's of light.
Answer:
The time taken in years is 
Explanation:
From the question we are told that
The speed is 
The distance from the sun to Pluto is 
Generally the time taken is mathematically represented as

=> 
=> 
Converting to years


=> 
=> 
<span>Yes, it's possible to hoist the child up.
Let's first determine the maximum amount of pull that the woman can exert. That will be the simple product of her weight and the coefficient of static friction with her shoes and the ground. So
0.8 * 190 = 152.
So far, so good, since 152 is greater than the boy's 80 lbs. But the cable rubs at the cliff edge and that means that the lady has to pull harder. Let's see how much harder.
There will be 80 lbs of tension on the cable, pressing against the cliff edge. So let's multiply by the coefficient of friction to get how much that is
0.2 * 80 = 16
So friction will take 16 lbs of effort to overcome. So the lady needs to pull with 80 + 16 = 96 lbs of force to move the boy. And since we've determined earlier that she can pull with up to 152 lbs of force, she can easily hoist the child up.</span>
Any of three muscles in each buttock that move the thigh, the largest of which is the gluteus maximus.