Because other people cannot see what you are sending to somebody
Answer:
He was the first scientist to observe and describe bacteria and protozoa by looking at a drop of water from a pound under a microscope. He also was the one to build the first compound microscope.
Hope this helps :)
P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm

<u>Answer:</u> The correct answer is 0.745 km
<u>Explanation:</u>
We are given:
A numerical value of 815 yards
To convert this into kilometers, we use the conversion factor:
1 km = 1093.6 yards
Converting the given value into kilometers, we get:

Hence, the correct answer is 0.745 km
Heat required : 4.8 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat needed to raise the temperature
Q = m . c . Δt
1. heat to raise temperature from -20 °C to 0 °C

2. phase change(ice to water)

3. heat to raise temperature from 0 °C to 25 °C

