They attract because they have opposite charges
Answer:
what i think is that,hemoglobin is what makes the blood red and the methemoglobin is what
Explanation:
D. Both particles and high energy radiation
Answer:
The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.
Explanation:
A molar heat of vaporization of 40.66 kJ / mol means that 40.66 kJ of heat needs to be supplied to boil 1 mol of water at its normal boiling point.
To know the amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure, the number of moles represented by 3.11 g of water is necessary. Being:
the molar mass of water is:
H₂O= 2* 1 g/mole + 16 g/mole= 18 g/mole
So: if 18 grams of water are contained in 1 mole, 3.11 grams of water in how many moles are present?

moles of water= 0.1728
Finally, the following rule of three can be applied: if to boil 1 mole of water at its boiling point it is necessary to supply 40.66 kJ of heat, to boil 0.1728 moles of water, how much heat is necessary to supply?

heat= 7.026 kJ
<u><em>The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.</em></u>
Answer:
D +405.0kJ mol-¹
Explanation:
Since bond energy is the energy required to break a bond, the energy of dissociation of X₂H₆ = +2775 kJmol⁻¹.
Since there is one X-X bond and six X-H bonds,
Bond energy of one X-X bond + Bond energy of six X-H bonds = energy of dissociation of X₂H₆.
Since bond energy of one X-H bond = 395 kJ mol⁻¹, then
Bond energy of one X-X bond + Bond energy of six X-H bonds = energy of dissociation of X₂H₆
Bond energy of one X-X bond + 6 × one X-H bond = +2775 kJmol⁻¹.
Bond energy of one X-X bond + 6 × 395 kJ mol⁻¹ = +2775 kJmol⁻¹.
Bond energy of one X-X bond + 2370 kJ mol⁻¹ = 2775 kJmol⁻¹
Bond energy of one X-X bond = 2775 kJmol⁻¹ - 2370 kJ mol⁻¹
Bond energy of one X-X bond = +405 kJmol⁻¹