Answer:
V = 192 kV
Explanation:
Given that,
Charge, 
Distance, r = 0.3 m
We need to find the electric potential at a distance of 0.3 m from a point charge. The formula for electric potential is given by :

So, the required electric potential is 192 kV.
Answer:
Explanation:
mass of the ball = 146 g = 146 / 1000 = 0.146 kg
initial speed of the ball = 40.6 m/s
final speed of the ball = - 45.1 m/s
time of impact = 1.05 ms = 1.05 / 1000 = 0.00105 s
impulse, Ft = change in momentum = mv - mu = m (v-u)
F = m (v - u) / t = 0.146 kg ( -45.1 -40.6) / 0.00105 s = -11916.4 N
Answer:
the pressure drop for the water flow is greater than that for the air flow.
Explanation:
Detailed analysis of the problem is show below.
A) The acceleration is due to gravity at any given point if you look at it vertically, so

.
b)

, so

. We use

and then the final speed must be 0 because it stops at the highest point. So

. Solve for

and you get

c)

, and then we plug the values:

and we already have the time from "b)", so
![Y_m_a_x = [(32sin(25))*(32sin(25)/10)] - 5(32sin(25)/10)^2](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%20%5B%2832sin%2825%29%29%2A%2832sin%2825%29%2F10%29%5D%20-%205%2832sin%2825%29%2F10%29%5E2)
; then we just rearrange it
![Y_m_a_x = 10[(32sin(25))^2/100] - 5 [(32sin(25))^2/100]](https://tex.z-dn.net/?f=Y_m_a_x%20%3D%2010%5B%2832sin%2825%29%29%5E2%2F100%5D%20-%205%20%5B%2832sin%2825%29%29%5E2%2F100%5D%20)
and finally