Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity
The type of boot authentication that is more secure is Unified Extensible Firmware Interface
Unified Extensible Firmware Interface help to provide a computer booting that is more secured.
Unified Extensible Firmware Interface is a computer software program that work hand in hand with an operating system, it main function is to stop a computer system from boot with an operating system that is not secured.
For a computer system to boot successfully it means that the Operating system support the Unified Extensible Firmware Interface because it secured.
Inconclusion The type of boot authentication that is more secure is Unified Extensible Firmware Interface
Learn more here :
brainly.com/question/24750986
The maximum shear stress in the tube when the power is transmitted through a 4: 1 gearing is 28.98 MPa.
<h3>What is power?</h3>
Power is the energy transferred per unit time.
Torque is find out by
P = 2πNT/60
10000 = 2π x 2000 x T / 60
T =47.74 N.m
The gear ratio Ne / Ns =4/1
Ns =2000/4 = 500
Ts =Ps x 60/(2π x 500)
Ts =190.96 N.m
Maximum shear stress τ = 16/π x (T / (d₀⁴ - d₁⁴))
τ max =T/J x D/2
where d₁ = 30mm = 0.03 m
d₀ = 30 +(2x 4) = 38mm =0.038 m
Substitute the values into the equation, we get
τ max = 16 x 190.96 x 0.038 /π x (0.038⁴ - 0.03⁴)
τ max = 28.98 MPa.
Thus, the maximum shear stress in the tube is 28.98 MPa.
Learn more about power.
brainly.com/question/13385520
#SPJ1