The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Waves travel through matter, so I am 99.9% sure that is the answer.
Id look through your lesson to be sure!
A teaspoon of caffeine is <em>NOT</em> deadly as teaspoon of ricin
Answer: B) 2 (as indicated by electron distribution shown), but taking into account the real properties of this element, 4,7,8 also occur (see below).
Explanation:
This is the electron complement/atomic number of ruthenium, which actually has the structure [Kr] 5s1 4d7
Nevertheless, Ru does not form Ru(I) compounds and few Ru(II) compounds (RuCl2, RuBr2, RuI2). It also forms Ru(III)Cl3 and a larger number of Ru(IV) compounds, e.g. RuO2, RuS2. It also forms RuO4