Answer:
74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.
Explanation:
The balanced reaction is:
Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- Ca(NO₃)₂: 1 mole
- CaCO₃: 1 mole
- NaNO₃: 2 mole
Being the molar mass of the compounds:
- Na₂CO₃: 106 g/mole
- Ca(NO₃)₂: 164 g/mole
- CaCO₃: 100 g/mole
- NaNO₃: 85 g/mole
then by stoichiometry the following quantities of mass participate in the reaction:
- Na₂CO₃: 1 mole* 106 g/mole= 106 g
- Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
- CaCO₃: 1 mole* 100 g/mole= 100 g
- NaNO₃: 2 mole* 85 g/mole= 170 g
You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of CaCO₃?

mass of CaCO₃= 74.81 grams
<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>
Answer:
Here's how I would explain it.
Explanation:
Think of it this way.
When you mix solutions of silver nitrate and sodium chloride, you get an immediate precipitate of silver chloride. The equation is
Ag⁺(aq) + Cl⁻(aq) ⟶ AgCl(s)
Now, take some AgCl and stir it vigorously with water.
You won't see much happening, because the AgCl is has such a low solubility. Not much of it will go into solution. And yet, a small amount of it does dissolve until the solution is saturated.
The concentration of AgCl in the saturated solution is
about 0.000 01 mol·L⁻¹.
I hope you will agree that this is a dilute solution even though it is saturated with AgCl.
<span>Calculate the mass of 1 L of solution. Mass of solution=1000mL soln ×1.19 g soln1mL soln =1190 g soln (3 significant figures + 1 guard digit)Calculate the mass of HCl . Mass of HCl=1190g soln ×37.7g HCl100g soln =448.6 g HCl.Calculate the moles of HCl . ...Calculate the molarity of the HCl.</span>
B.false because water is not mineral