1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
3 years ago
11

Please help!!!!!! please help!!!!!! please help!!!!!!​

Physics
1 answer:
natulia [17]3 years ago
3 0

Answer:

The answer is: wavelength

Explain:

Or crest

You might be interested in
Some bats have specially shaped noses that focus ultrasound echolocation pulses in the forward direction. Why is this useful?
creativ13 [48]

Answer:

The evolutionary success of bats is accredited to their ability, as the only mammals, to fly and navigate in darkness by echolocation, thus filling a niche exploited by few other predators. Over 90% of all bat species use echolocation to localize obstacles in their environment by comparing their own high frequency sound pulses with returning echoes. The ability to localize and identify objects without the use of vision allows bats to forage for airborne nocturnal insects, but also for a diverse range of other food types including motionless perched prey or non-animal food items.

The agility and precision with which bats navigate and forage in total darkness, is in large part due to the accuracy and flexibility of their echolocation system. The echolocation clicks of the few echolocating Pteropodidae (Rousettus) are fundamentally different from the echolocation sounds produced in the larynx that we focus on here, and thus not part of this review. Many studies have shown that bats adapt their echolocation calls to a variety of conditions, changing duration and bandwidth of each call and the rate at which calls are emitted in response to changing perceptual demands . In recent years the intensity and directionality of echolocation signals has received increasing research attention and it is becoming evident that these parameters also play a major role in how bats successfully navigate and forage. To perceive an object in its surroundings, a bat must ensonify the object with enough energy to return an audible echo. Hence, the intensity and duration of the emitted signal act together to determine how far away a bat can echolocate an object. Equally important is signal directionality. Bat echolocation calls are directional, i.e., more call energy is focused in the forward direction than to the sides (Simmons, 1969; Shimozawa et al., 1974; Mogensen and Møhl, 1979; Hartley and Suthers, 1987, 1989; Henze and O'Neill, 1991). An object detectable at 2 m directly in front of the bat may not be detected if it is located at the same distance but off to the side. Consequently, at any given echolocation frequency and duration, it is the combination of signal intensity and signal directionality that defines the search volume, i.e., the volume in space where the bat can detect an object.

The aim of this review is to summarize current knowledge about intensity and directionality of bat echolocation calls, and show how both are adapted to habitat and behavioral context. Finally, we discuss the importance of active motor-control to dynamically adjust both signal intensity and directionality to solve the different tasks faced by echolocating bats.

Explanation:

3 0
3 years ago
What is it called when sediment is dropped and comes to rest?
larisa86 [58]
I think d would be the answer.
3 0
4 years ago
Read 2 more answers
Paul’s 10 kg baby sister Susan sits on a mat. Paul pulls the mat across the floor using a rope that is angled 30° above the floo
kiruha [24]

Answer:

The speed of Susan is 2.37 m/s

Explanation:

To visualize better this problem, we need to draw a free body diagram.

the work is defined as:

W=F*d*cos(\theta)

here we have the work done by Paul and the friction force, so:

W_p=F_p*d*cos(0)\\F_p=30N*cos(30^o)=26N\\W_p=26*3*(1)=78J

W_f=F_f*d*cos(180)\\F_f=\µ*(10*9.8-30N*sin(30^o))=16.6N\\W_p=16.6*3*(-1)=50J

Now the change of energy is:

W_p-W_f=\frac{1}{2}m*v^2\\v=\sqrt{\frac{2(78J-50J)}{10kg}}\\v=2.37m/s

4 0
3 years ago
Read 2 more answers
IMPORTANT 3 QUESTIONS!
Brums [2.3K]

Answer:

7. 20,000,000 mL.

8. 8,000 m.

9. 120,000 secs.

10. 4

Explanation:

7. Determination of the volume in millilitres (mL)

Volume in litre (L) = 20,000 L

Volume in millilitres (mL) =..?

The volume in mL can be obtained as follow:

1 L = 1,000 mL

Therefore,

20,000 L = 20,000 x 1,000 = 20,000,000 mL.

Therefore, 20,000 L is equivalent to 20,000,000 mL.

8. Determination of the distance in metre (m)

Distance in mile = 5 mile

Distance in metre =?

First, we shall convert from mile to kilometre.

This can be done as follow:

1 mile = 1.6 km

Therefore,

5 mile = 5 x 1.6 = 8 km

Finally, we shall convert 8 km to metre (m).

This is illustrated below:

1 km = 1,000 m

Therefore,

8 km = 8 x 1,000 = 8,000 m

Therefore, 5 miles is equivalent to 8,000 m.

9. Determination of the time in seconds.

Time = 400 minutes for 5 days.

First, we shall convert 400 mins to hour.

This is illustrated below:

60 minutes = 1 hour

Therefore,

400 mins = 400/60 = 20/3 hours

The time (hours) is 20/3 hours in 1 day.

Therefore, the time (hours) in 5 days will be = 20/3 x 5 = 100/3 hours.

Next, we shall convert 100/3 hours to minutes.

This is illustrated below:

1 hour = 60 minutes

Therefore,

100/3 hours = 100/3 x 60 = 2000 mins

Finally, we shall convert 2000 mins to seconds.

This is illustrated below:

1 mins = 60 secs

2000 mins = 2000 x 60 = 120,000 secs.

Therefore, the time is 120,000 secs.

10. Determination of the number of significant figures.

To obtain the significant figures of a number, we simply count all the numbers available.

Therefore, the number of significant figures for 9876 is 4.

6 0
4 years ago
Which one of these Target games uses the underhand throw?
vesna_86 [32]

Answer:

Cornhole

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Complete the blanks and tell the reaction force
    8·1 answer
  • A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of 35.0 from the vertical. Wh
    11·1 answer
  • A sport car moving at constant speed travels 110m in 5.0 s. if it then brakes and comes to a stop in 4.0 s, what is the magnitud
    6·1 answer
  • 1. How would the motion of a pendulum change at high altitude like a high mountain top? How would the motion change under weight
    7·1 answer
  • What is the energy of light that must be absorbed by a hydrogen atom to transition an electron from n = 3 to n = 5?
    11·1 answer
  • Anissa slides down a playground slide sloped at 25o. The coefficient of kinetic friction between Anissa and the slide is 0.15. I
    12·1 answer
  • A large truck collides head-on with a small compact car. During the collision: (A) the truck exerts a greater amount of force on
    9·1 answer
  • How does charging by conduction occur?
    5·1 answer
  • Assume that 10 waves pass a fixed point in 5 seconds. What is the frequency of the waves in hertz?
    8·1 answer
  • You start driving your car when the air temperature is 270.734 K. The air pressure in the tires is 454.518 kPa. After driving a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!