1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tresset_1 [31]
3 years ago
11

Please help!!!!!! please help!!!!!! please help!!!!!!​

Physics
1 answer:
natulia [17]3 years ago
3 0

Answer:

The answer is: wavelength

Explain:

Or crest

You might be interested in
A 5.0 Ω resistor is hooked up in series with a 10.0 Ω resistor followed by a 20.0 Ω resistor. The circuit is powered by a 9.0 V
yan [13]
<h2>Answer:</h2>

(a) Attached to the response as Figure 1.

(b) 35.0Ω

(c) Across 5.0Ω = 1.3V

   Across 10.0Ω = 2.6Ω

   Across 20.0Ω = 5.2Ω

<h2>Explanation:</h2>

(a) The labelled circuit using the correct symbols (for the resistors and battery) has been attached to this response.

(b) Since the resistors are hooked up in series, their equivalent resistance R, is found by adding the individual resistances of the resistors (R₁, R₂ and R₃). i.e

R = R₁ + R₂ + R₃               -------------------(i)

Where;

R₁ = 5.0 Ω

R₂ = 10.0 Ω

R₃ = 20.0 Ω

<em>Substitute these values into equation (i) as follows;</em>

∴ R = 5.0 Ω + 10.0 Ω + 20.0 Ω

∴ R = 35.0 Ω

Therefore, the equivalent resistance is ∴ R = 35.0Ω

(c) When resistors are connected in series, the same current passes through them. To get the current through each resistor;

i. First, replace the resistors by their equivalent resistor as calculated above. The diagram has been attached to this response.

ii. As seen in the diagram, the current flowing through the equivalent resistor can be calculated using Ohm's law as follows;

V = I R              ------------------(ii)

Where;

V = Voltage supplied to the circuit = 9.0V

I = Current through the circuit

R = Resistance of the equivalent resistor = 35.0Ω

Substitute these values into equation (ii)

9.0 = I x 35.0

I = \frac{9.0}{35.0}

I = 0.26A

This is also the current flowing through each of the resistors separately.

iii. Calculate the voltage drop across

1.<em> 5.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 5.0Ω resistor

I = current through the 5.0Ω resistor = 0.26A

R = resistance of the 5.0Ω resistor = 5.0Ω

=> V = 0.26 x 5.0

=> V = 1.3V

2.<em> 10.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 10.0Ω resistor

I = current through the 10.0Ω resistor = 0.26A

R = resistance of the 10.0Ω resistor = 10.0Ω

=> V = 0.26 x 10.0

=> V = 2.6V

3.<em> 20.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 20.0Ω resistor

I = current through the 20.0Ω resistor = 0.26A

R = resistance of the 20.0Ω resistor = 10.0Ω

=> V = 0.26 x 20.0

=> V = 5.2V

7 0
3 years ago
A bug walks exactly halfway around the edge of a circular cupcake with a diameter of 5 cm what is the distance he traveled and w
adelina 88 [10]

The circumference of a circle is (pi) x (diameter)

The circumference of the cupcake is (pi) x (5 cm)

Halfway around is (1/2) x (pi) x (5 cm) = (2.5 pi cm) = <em>about 7.85 cm</em>

The 'why' appears up above, in the first 2 lines of this solution.

7 0
4 years ago
Need help ASAPJenna made an electric circuit as seen in the picture. She placed a thermometer near her light bulb. After the lig
zepelin [54]
B) The temperature in the thermometer went up.
7 0
3 years ago
Read 2 more answers
A runner drank a lot of water during a race. What is the expected path of the extra filtered water molecules?
Naddika [18.5K]

Answer:

Afferent arteriole, glomerulus, nephron tubule, collecting duct

Explanation:

Blood enters the kidney through the renal artery, a thick branch from the descending aorta. In the hilum, it is divided into several branches that are distributed through the lobes of the kidney and are branching forming numerous afferent arterioles that form the glomerular clew. It is precisely the walls of these capillaries that act as ultrafilters, allowing small particles to pass through.

Blood that flows through the <u>afferent arteriole</u> circulates through the capillary vessels of the kidney (the true capillaries that provide the kidney with oxygen and nutrients necessary for its function). These capillaries are grouped together to form the renal vein which, in turn, pours into the inferior vena cava.

Given the function of the kidneys to eliminate waste products through urine, it is not surprising that these organs are the ones that receive the most blood per gram of weight. One way to express renal blood flow is by considering the renal fraction or fraction of cardiac output that passes through the kidneys.

The regulation of blood flow in the glomeruli is achieved by three formations: the polar bearing, the Goormaghtigh cells and the dense macula. The polar bearing consists of a thickening of the afferent arteriole wall before it enters the <u>renal glomerulus</u>. The arteriole loses its elastic membrane, the endothelium becomes discontinuous and the middle tunic is arranged in two layers, formed by secretory cells: these secretory cells produce Angiotensin and Erythropoietin.

Goormaghtigh cells are arranged at an angle between afferent and effector arterioles and meet in small columns. They are closely related to polar bearing cells. Between both formations is the dense macula (or Zimmerman's dense macula) that is in contact with the distal tubule and afferent arteriole just before it penetrates the glomerulus. These three formations, polar bearing, Goormaghtigh cells and dense macula form the juxtaglomerular apparatus that regulates the blood flow in the glomerulus.

<u>Nephrons</u> regulate water and soluble matter (especially Electrolytes) in the body, by first filtering the blood under pressure, and then reabsorbing some necessary fluid and molecules back into the blood while secreting other unnecessary molecules.

The reabsorption and secretion are achieved with the mechanisms of Cotransporte and Contratransporte established in the nephrons and associated collection ducts. Blood filtration occurs in the glomerulus, a capping of capillaries that is inside a Bowman's capsule.

Liquid flows from the nephron in the <u>collecting duct</u> system. This segment of the nephron is crucial to the process of water conservation by the body. In the presence of the antidiuretic hormone (ADH; also called vasopressin), these ducts become water permeable and facilitate their reabsorption, thus concentrating the urine and reducing its volume. Conversely, when the body must remove excess water, for example after drinking excess fluid, ADH production is decreased and the collecting tubule becomes less permeable to water, making the urine diluted and abundant.

6 0
3 years ago
A powerful motorcycle can produce an acceleration of 3.00 m/s2 while traveling at 90.0 km/h. At that speed the forces resisting
nata0808 [166]

Answer:

1185 N

Explanation:

From Newton’s second law of motion,  

F=ma where m= mass of motorcycle, a is acceleration of the motorcycle and F=Force

Net force acting on motorcycle F_{net} is given by  F_{net}=F-f

Where F is force acting on motorcycle and f is frictional force

Substituting F-f for F_{net}

F_{net}=ma hence  ma= F- f Substituting a with 3, m with 245Kg and f with 450N as provided

245*3= F- 450

F=245*3 +450= 1185 N

6 0
3 years ago
Other questions:
  • How would Newton's Three laws apply to a Ferris Wheel?
    10·1 answer
  • Please Help!!
    7·1 answer
  • A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4mp) are accelerated fr
    14·1 answer
  • An asteroid is speeding directly towards a space ship with a velocity of 255 m/s. If the asteroid is detected 8000 meters from t
    6·2 answers
  • Number 25 and 26 please!!!
    13·1 answer
  • Which of the following is not a natural resource? a. time b. water c. land d. air Please select the best answer from the choices
    10·1 answer
  • Which types of a magnet will have a bigger magnetic feild area?​
    15·1 answer
  • Which equation could be rearranged to calculate the frequency of a wave?
    11·2 answers
  • The brake shoes of your car are made of a material that can tolerate very high temperatures without being damaged. Why is this s
    11·1 answer
  • at maximum extension a bungee cord stores 2.0 X 10^6 J of energy. A 10 kg mass extends the bungee cord 1.3m. what is the maximum
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!