They both have two electron shells. Period indicates number of shells.
STP is the abbreviation of standard condition for temperature and pressure which is 273.15K temperature and 1.013× 10^5 Pa pressure. Since the pressure and temperature changes, I assume the question would ask about the result of the volume. The temperature used in ideal gas should be Kelvin, so 27 Celcius would be 300.15K.
The calculation would be
PV=T
V=T/P
V2/V1= T2*P1/T1*P2
V2/V1=273.15K* 90^10^3Pa/ 300.15K * 1.013× 10^5 Pa
V2= 0.81904 * 51.7ml
V2= 42.34ml
<u>Answer:</u> The correct answer is Option 5.
<u>Explanation:</u>
- To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the NaOH.
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get:

- To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base.
We are given:

Putting values in above equation, we get:

Hence, the correct answer is Option 5.
Answer:
81.5 L
Explanation:
We can use the combined gas law equation that gives the relationship among pressure, temperature and volume of gases for a fixed amount of gas.
P1V1 / T1 = P2V2 / T2
where P1 - pressure, V1 - volume and T1 - temperature at the first instance
P2 - pressure, V2 - volume and T2 - temperature at the second instance
substituting the values in the equation
1240 Torr x 47.2 L / 298 K = 730 Torr x V2 / 303 K
V2 = 81.5 L
the new volume the gas would occupy when the conditions have changed is 81.5 L