Answer:
a. Initial speed is zero from a crouching position...
b... Mass of body * 9.8
Explanation:
Ohm’s Law states that electrical current is proportional to voltage and therefore inversely proportional to resistance - V = I x R
To solve this problem, we use the Law of Universal Gravitation:
F = Gm1m2/d^2
where m1 and m2 are two objects. In this case, earth and man. d is the distance between the objects. Lastly, G is the gravitational constant. Since the mass of the earth and man are constant, this is lumped up with G into k. The equation would be:
F = k/d^2
k = Fd^2

The radius of earth, d1, is equal to 6.371E+6 m. Thus, d2 = 2d1
(8E+2)(d1)^2 = F2(2d1)^2
(8E+2)(d1)^2 = 4F2(d1)^2
(8E+2)=4F2
F2 = 200 Newtons
The box is accelerated from rest to 4 m/s in a matter of 2.5 s, so its acceleration <em>a</em> is such that
4 m/s = <em>a</em> (2.5 s) → <em>a</em> = (4 m/s) / (2.5 s) = 1.6 m/s²
Then the force applied to the box has a magnitude <em>F</em> such that
<em>F</em> = (10 kg) (1.6 m/s²) = 16 N
Answer:
The energy that it starts with at the top of the inclinede Plane
Explanation:
Hope I helped:)