The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
Answer:
The process of photosynthesis occurs when green plants use the energy of light to convert carbon dioxide (CO2) and water (H2O) into carbohydrates. Light energy is absorbed by chlorophyll, a photosynthetic pigment of the plant, while air containing carbon dioxide and oxygen enters the plant through the leaf stomata.
.5 mol of A will be left over since 1.5 mol of A will be used for every 3 mol of B due to the 2:1 ratio established by the formula.
Mass = Density × Volume
= 30.0 mg / mL × 375 mL
= 11250 mg
= 11.25 g
∴ the total mass of insulin in the bottle is 11.25 g (11250 mg)
Answer:
question 1: 3
question 2: the number of Valence electrons in the atom
hope it helps