Explanation:
Below is an attachment containing the solution.
Answer:
33300J
Explanation:
Given parameters:
Mass of ice = 100g
Unknown:
Amount of energy = ?
Solution:
This is a phase change process from solid to liquid. In this case, the latent heat of melting of ice is 3.33 x 10⁵ J/kg.
So;
H = mL
m is the mass
L is the latent heat of melting ice
Now, insert the parameters and solve;
H = mL
mass from gram to kilogram;
100g gives 0.1kg
H = 0.1 x 3.33 x 10⁵ = 33300J
Answer:44.04mL
Explanation:Parameters given
V1 = 30.0mL
P1 = 36.7psi
P2 = 25.0psi
V2 = ??
From Boyle's gas law, which states that "the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature"
This means that,
the pressure of a gas tends to increase as the volume of the container decreases, and also the pressure of a gas tends to decrease as the volume of the container increases.
Mathematically, Boyle's can be represented as shown below
P= k/V
Where P = Pressure, V = Volume and k is constant
Therefore,
PV = k
P1V1 = P2V2 =PnVn
Using the formula
P1V1 = P2V2
V2 = P1V1/P2
V2 = (36.7psi × 30.0mL) / 25.0psi
V2 = 1101.0/25.0
V2 = 44.04mL