Balanced chemical reaction: 2S + 3O₂ → 2SO₃.
1) Answer is: oxygen is limiting reactant.
n(S) = 3 mol; amount of sulfur.
n(O₂) = 4 mol; amount of oxygen.
From balanced chemical reaction: n(S) : n(O₂) = 2 : 3.
3 mol : n(O₂) = 2 : 3.
n(O₂) = (3 · 3 mol) ÷ 2.
n(O₂) = 4.5 mol; limiting reactant, because there is only 4 mol of oxygen.
2) Answer is: sulfur(S) is limiting reactant.
n(S) = 3 mol.
n(O₂) = 5 mol.
From balanced chemical reaction: n(S) : n(O₂) = 2 : 3.
n(S) : 5 mol = 2 : 3.
n(S) = 10 mol ÷ 3.
n(S) = 3.33 mol; there is only 3 mol of sulfur, so it is not enough.
3) Answer is: oxygen (O₂) is limiting reactant.
n(S) = 3 mol.
n(O₂) = 3 mol.
From balanced chemical reaction: n(S) : n(O₂) = 2 : 3.
3 mol : n(O₂) = 2 : 3.
n(O₂) = (3 · 3 mol) ÷ 2.
n(O₂) = 4.5 mol; limiting reactant, because there is only 3 mol of oxygen.
You can solve this by dividing the mass by the molar mass. The molar mass of CuF2 is about 101.5 g/mol. Therefore there are 100.0/101.5 = 0.985 mol.
Answer:
There is a relationship between latitude and temperature around the world, as temperatures are typically warmer approaching the Equator and cooler approaching the Poles. There are variations, though, as other factors such as elevation, ocean currents, and precipitation affect climate patterns.
Explanation:
Answer:
In chemistry, a symbol is an abbreviation for a chemical element. Symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised.
Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times.
Explanation:
Density of a solution is mass of solution per unit volume
Density = mass/volume
mass of solution is 46.08 g
volume of solution is 58.9 mL
since mass and volume is known, density can be calculated
density = 46.08 g / 58.9 mL = 0.78 g/mL