Answer:
It will take 5492 seconds to electroplate 0.5 mm of gold on an object .
Explanation:
Mass of gold = m
Volume of gold = v
Surface area on which gold is plated = 
Thickness of the gold plating = h = 0.5 mm = 0.05 cm
1 mm = 0.1 cm

Density of the gold = 

Moles of gold = 

According to reaction, 1 mole of gold required 3 moles of electrons,then 0.152 moles of gold will require :
of electrons
Number of electrons = N =
Charge on single electron = 
Total charge required = Q

Amount of current passes = I = 8 Ampere
Duration of time = T



It will take 5492 seconds to electroplate 0.5 mm of gold on an object .
From,
RAM=element×its relative abudance/total abudance
=((107×13)+(12×109))/25
The answer is=107.96
Answer:
3.59x10⁻⁴ mol
Explanation:
Assuming ideal behaviour we can solve this problem by using the<em> PV=nRT formula</em>, where:
- R = 8314.46 Pa·L·mol⁻¹·K⁻¹
We<u> input the data given by the problem</u>:
- 205 Pa * 5.68 L = n * 8314.46 Pa·L·mol⁻¹·K⁻¹ * 390.4 K
And <u>solve for n</u>:
Answer:
d. Sum of product enthalpies minus the sum of reactant enthalpies
Explanation:
The standard enthalpy change of a reaction (ΔH°rxn) can be calculated using the following expression:
ΔH°rxn = ∑n(products) × ΔH°f(products) - ∑n(reactants) × ΔH°f(reactants)
where,
ni are the moles of products and reactants
ΔH°f(i) are the standard enthalpies of formation of products and reactants
Answer:
The answer fo this is D because of the person controlling the outcome for both variables