Answer:
Mg + HCL --> MgCl2 + H2
mass 65.0 mass 257.26
RFM 24 RFM 95
moles 2.708 moles 2.708
Explanation:
mass of MgCl = 257.26 grams
Answer:
When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. The end result of increased molecular motion is that the object expands and takes up more space.
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.
Answer:
84.0 ppm is the concentration of Red 40 dy in the original sports drink.
Explanation:
Concentration of red dye in sport drink before dilution 
Volume of the sport drink before dilution 
Concentration of red dye in sport drink after dilution 
Volume of the sport drink after dilution 
( dilution )


84.0 ppm is the concentration of Red 40 dy in the original sports drink.
The moles of Ba(OH)2 that is required to react with 117 HBr is calculated as below
find the moles of HBr used
mass/ molar mass = 117 g/ 80.9 g/mol = 1.446 moles
write the reacting equation
Ba(OH)2 + 2 HBr = BaBr2 + 2 H2O
by use of mole ratio of Ba(OH)2 : HBr which is 1:2 the moles of Ba(OH)2 is therefore
= 1.446 moles x1/2 = 0.723 moles of Ba(OH)2