Answer:
Explanation:
We have a metal ring of diameter
d = 4.2cm = 0.042m
r = d/2 = 0.021m
And it is place between the north pole and south pole of a large magnet with the plane of it's area perpendicular to the magnetic field.
Given that the magnetic field is
B = 1.12 T
The rate of decrease of magnetic field is 0.2T/s, since it is decrease then,
dB/dt = -0.2 T/s
The induce electric field is given as,
From faradays law
ε = ∫E•dl = -dΦ/dt
Magnetic flux is given as
Φ = BA
Φ = πr²×B = πr²B
Also, ∫E•dl = E×2πr = 2πrE
So,
∫E•dl = -dΦ/dt
2πrE = -d(πr²B) / dt
r is a constant, then
2πrE = -πr² dB/dt
Divide both side by πr
2E = -r dB/dt
E = -r dB/dt / 2
E = -0.021 × -0.2 / 2
E = 0.0021 V/m
The magnetic field point from north to south pole and it is decreasing and this means that the magnetic flux is also decreasing, so the induce magnetic field must point in the same direction of the original magnetic field, so the induce current circulate counter-clockwise as viewed from the south pole
The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.
Answer:
Magnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Hope this helps you! :)
Answer:
68.5 meters
Explanation:
Given:
v₀ = 0 m/s
a = 9.8 m/s²
t = 3.74 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0) (3.74) + ½ (9.8) (3.74)²
Δy = 68.5
The egg fell 68.5 meters.
Amplitude is a measurement of the magnitude of displacement (or maximum disturbance) of a medium from its resting state, as diagramed in the peak deviation example below (it can also be a measurement of an electrical signal's increased or decreased strength above or below a nominal state).