Answer:
1.54 liters.
Explanation:
If the liters increases by .27 for every 100ºC, then just multiply .27 by 2.
You'd then get 1.54, which is your answer.
Hope this helps!
What do you mean is that a school question
Answer:
In both nuclear and chemical reactions, two physical quantities are seen to be conserved and unchanging: the number of particles and the total charge. A constant number of particles in nuclear reactions does not imply that mass is conserved.
Explanation:
The solution would be like this for this specific problem:
<span>Given:
</span>66.0 g of carbon monoxide
reaction 2 C + O2 → 2 CO
<span>mol e= mass / molar mass <span>
<span>mole of 2CO = 66.0g / (12.011 15.999)g / mol </span>
mole of 2CO = 2.36 (CO and C has a 1:1 mole ratio)
mole of 2CO = 2.36 -> mole of 1 CO = 2.36 / 2 = 1.18
<span>We got 2 moles of C, thus 1.18 x 2 = 2.36
So, we 2.36 </span>moles of carbon are needed to produce 66.0 g of carbon monoxide in the </span>reaction
2 C + O2 → 2 CO.</span>
<span>To add, Carbon nonmetallic
and tetravalent, thus, making four electrons available to form covalent
chemical bonds. </span>