A. An electron has far less mass than either a proton or neutron.
Jovian planets and dwarf planets like pluto are in the outer part of our solar system. so, terrestrial planets ,which means earth like planets, live in the inner part of our solar system. or B. is the answer
Answer:
(a) A+B = 2i-3j
(B) A-B = 4i + j
Explanation:
We have given two vectors A = 3i-j and B = -1-2j
We have to find the two vectors that is A+B and A-B
(A) In first art we have calculate A+B for this we have to add simply vector A and v ector B
So A+B = 3i-j-i-2j = 2i-3j
(B) In this part we have to find A-B for this we have to simply subtract B from A so A-B = 3i-j-(-i-2j) =3i-j+i+2j =4i+j
Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s